Anti-Hebbian Spike-Timing-Dependent Plasticity and Adaptive Sensory Processing
نویسندگان
چکیده
Adaptive sensory processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptive sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important novel information needed to improve performance of specific tasks. The mechanism of spike-timing-dependent plasticity (STDP) has proven to be intriguing in this context because of its dual role in long-term memory and ongoing adaptation to maintain optimal tuning of neural responses. Some of the clearest links between STDP and adaptive sensory processing have come from in vitro, in vivo, and modeling studies of the electrosensory systems of weakly electric fish. Plasticity in these systems is anti-Hebbian, so that presynaptic inputs that repeatedly precede, and possibly could contribute to, a postsynaptic neuron's firing are weakened. The learning dynamics of anti-Hebbian STDP learning rules are stable if the timing relations obey strict constraints. The stability of these learning rules leads to clear predictions of how functional consequences can arise from the detailed structure of the plasticity. Here we review the connection between theoretical predictions and functional consequences of anti-Hebbian STDP, focusing on adaptive processing in the electrosensory system of weakly electric fish. After introducing electrosensory adaptive processing and the dynamics of anti-Hebbian STDP learning rules, we address issues of predictive sensory cancelation and novelty detection, descending control of plasticity, synaptic scaling, and optimal sensory tuning. We conclude with examples in other systems where these principles may apply.
منابع مشابه
Coactivation of Pre- and Postsynaptic Signaling Mechanisms Determines Cell-Specific Spike-Timing-Dependent Plasticity
Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patt...
متن کاملStimulus-Timing Dependent Multisensory Plasticity in the Guinea Pig Dorsal Cochlear Nucleus
Multisensory neurons in the dorsal cochlear nucleus (DCN) show long-lasting enhancement or suppression of sound-evoked responses when stimulated with combined somatosensory-auditory stimulation. By varying the intervals between sound and somatosensory stimuli we show for the first time in vivo that DCN bimodal responses are influenced by stimulus-timing dependent plasticity. The timing rules an...
متن کاملFunctional Implications of Synaptic Spike Timing Dependent Plasticity and Anti-Hebbian Membrane Potential Dependent Plasticity
Recent extensions of the Perceptron as the Tempotron and the Chronotron sug-gest that this theoretical concept is highly relevant for understanding networks ofspiking neurons in the brain. It is not known, however, how the computationalpower of the Perceptron might be accomplished by the plasticity mechanisms ofreal synapses. Here we prove that spike-timing-dependent plasticity ...
متن کاملNMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus
Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NM...
متن کاملIntrinsic Stability of Temporally Shifted Spike-Timing Dependent Plasticity
Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between presynaptic spike trains and it generates competition among synapses. However, STDP has an inherent instability because strong synapses are more likely to be strengthened than weak ones, causing them to grow in strength until some biophysical limit is reached. Through sim...
متن کامل